Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
نویسندگان
چکیده
منابع مشابه
Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
Let [Formula: see text], [Formula: see text], and [Formula: see text] be a strongly monotone and Lipschitz mapping. A Krasnoselskii-type sequence is constructed and proved to converge strongly to the unique solution of [Formula: see text]. Furthermore, our technique of proo f is of independent interest.
متن کاملMonotone Spaces and Nearly Lipschitz Maps
A metric space (X, d) is called c-monotone if there is a linear order < on X and c > 0 such that d(x, y) 6 c d(x, z) for all x < y < z in X. A brief account of investigation of monotone spaces including applications is presented. 1 Monotone and σ-Monotone Spaces. In [6] I investigated existence of sets in Euclidean spaces that have large Hausdorff dimension and yet host no continuous finite Bor...
متن کاملBrowder-Krasnoselskii-Type Fixed Point Theorems in Banach Spaces
1 Department of Mathematical Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA 2 Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia 3 Department of Mathematics, National University of Ireland, Galway, Ireland 4 Laboratoire de Mathématiques et de Dynamique de Populations, Université C...
متن کاملOn Fréchet differentiability of Lipschitz maps between Banach spaces
A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...
متن کاملLipschitz - free Banach spaces
We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SpringerPlus
سال: 2015
ISSN: 2193-1801
DOI: 10.1186/s40064-015-1044-1